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Abstract Capacitive touch sensors capture a sequence of images of a finger’s in-
teraction with a surface that contain information about its contact shape, posture,
and biomechanical structure. These images are typically reduced to two-dimensional
points, with the remaining data discarded – restricting the expressivity that can be
captured to discriminate a user’s touch intent. We develop a deep touch hypothe-
sis that (1) the human finger performs richer expressions on a touch surface than
simple pointing; (2) such expressions are manifest in touch sensor image sequences
due to finger–surface biomechanics; and (3) modern neural networks are capable of
discriminating touch gestures using these sequences. In particular, a press gesture
based on an increase in a finger’s force can be sensed without additional hardware,
and reliably discriminated from other common expressions. This work demonstrates
that combining capacitive touch sensing with modern neural network algorithms is
a practical direction to improve the usability and expressivity of touch-based user
interfaces.

1 Introduction

Touch interaction is predominantly driven by two-dimensional pointing – where a
user’s contact on a surface is reduced to a single point (its centroid), with criteria
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Fig. 1 An illustration of
a press gesture: a user’s
finger contacts a touch sensor
and deforms as the force
behind it increases (top); this
deformation is observed as a
unilateral expansion on the
sensor image (bottom).
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placed on its spatiotemporal properties to define various gestures (Buxton et al,
1985; Buxton, 1995). The most common of these gestures in contemporary touch
interaction are tapping, long pressing (touch and hold), and scrolling (panning,
dragging, flicking, and surface–stroke gestures, etc.), which are modelled using a
set of three heuristics: (1) if the distance from the initial contact location exceeds a
hysteresis threshold, the gesture is a scroll; (2) if the duration since the initial contact
exceeds a time threshold, the gesture is a long press; (3) otherwise, the gesture is a
tap when the finger contact is lifted. Although this model has nurtured a broad and
successful design space for interaction, it belies the rich signal that touch sensors
produce. In particular, capacitive touch sensors capture an ‘image’ of the finger’s
contact shape that can reveal the evolution of a finger’s posture during a contact
(Figure 1).

As long press relies on a latency threshold, it is the least direct, discoverable,
usable, or expressive of the three gestures described. Force sensing has been explored
– both academically and commercially – as a method for rectifying these problems
by creating a force press gesture that is directly connected to an active parameter
of the user’s input: their finger’s force. However, force sensing requires additional
hardware that suffers from practical challenges in its cost and integration.

Observations and analyses of the human finger’s biomechanics and the underlying
touch sensor technology (capacitive sensing) suggest a complementary approach to
the latency-based long press. In many cases, a press gesture is manifest in the subtle
signals that are captured by the image sequence from a capacitive touch sensor: as a
user increases their finger’s force on a screen, its contact mass increases unilaterally
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as the strain on the most distal finger joint increases and the finger rolls downward
(Figures 1 and 6).

These raw images are difficult to analyse heuristically due to the high dimension-
ality of the data, temporal dependencies in the gesture, sensor noise under different
environmental conditions, and the range of finger sizes and postures that may be
used. However, modern neural learning techniques present an opportunity to analyse
touch sensor images with a data-driven approach to classification that is robust to
these variances.

We call this approach deep touch: a neural model for sensing touch gestures
based on the biomechanical interaction of a user’s finger with a touch sensor. To
differentiate between gestures, we use a neural network to combine complex spatial
(convolutional) features from individual images with temporal (recurrent) features
across a sequence of touch sensor images. We identify a set of biomechanical
patterns to shape the learned features and minimise the number of parameters so that
the resultant model can be used in real-time without impairing system latency or
responsiveness. Although this does not allow force sensing per se, it can recognise
a user’s intention to press as a discrete gesture.

In this chapter, we first present an overview of touch sensing hardware, finger–
surface interaction, and the touch input design space. The overview highlights a
weakness of the current touch interaction system: the lack of a direct pressing gesture.
We then describe the deep touch model: the biomechanical patterns, neural model
design, data collection methodology, and training procedure. Finally, we describe
how this model was integrated into the Android gesture classification algorithm as
part of Google Pixel 4 and 5 devices without incurring additional input latency.

2 Touch Sensing and Finger Interaction

2.1 Touch-Sensing Hardware

Of the techniques for detecting the presence of a human finger near an object (re-
viewed by Zimmerman et al, 1995; Walker, 2012; Grosse-Puppendahl et al, 2017),
the most common for small–medium size mobile devices is Projected Capacitive
Touch (PCT or ‘p-cap’). PCT is based on the principle of capacitive coupling (Bar-
rett and Omote, 2010; Walker, 2012): when two conductive objects (electrodes) are
brought close together, they can hold a charge between them – their capacitance –
which becomes disrupted when another conductive object encroaches. The capaci-
tance � of two such electrodes, separated by a dielectric material (usually glass or
plastic), is given by

� = n:n0
�

3
, (1)

where n: is the dielectric constant of the separating material, n0 is the constant
permittivity of a vacuum, � is the area of overlap between the electrodes, and 3 is
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Fig. 2 A projected capac-
itive touch (PCT) sensor:
two electrodes separated by
a dielectric. A capacitive
coupling is created with a
field projected from a drive
electrode and measured on a
sense electrode. This field is
disrupted when another con-
ductive object (e.g. a finger)
comes close.
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the distance between them.When one electrode is driven (the transmitting electrode),
it projects an electric field that allows � to be measured on the other (the sensing
electrode). When another conductive object approaches this field, as in Figure 2, it
‘steals’ some of the charge from the field by shunting it to ground through its own
inherent capacitance path – reducing the steady-state � by some amount (Δ�).1 For
a human finger this is typically on the order of 100 pF.

In a touch sensor on a display these electrodes are typically made from a trans-
parent conductor (such as indium tin oxide – ITO), and arranged as a layer of rows
and a layer of columns, with the dielectric sandwiched between them (Westerman,
1999; Lee et al, 2014). The locations where the electrodes overlap (the cells) are
where Δ� is measured.

This matrix of electrodes has a much lower resolution than the pixel matrix of the
underlying display – for example, the Google Pixel 4 has pixel density of roughly
20 px/mm, but a touch cell density of roughly 0.25 cells/mm. This discrepancy is
resolved by a touch controller that performs several processing steps (reviewed by
Wang and Blankenship, 2011; O’Connor, 2010)—

1. Baselining to remove the steady-state capacitance � when there are no touch
contacts.

2. Filtering to remove analogue noise (e.g. from the components driving the display)
and parasitic capacitance.

3. Centroiding to segment and interpolate the cell responses to a set of contacts and
their precise locations.

Figure 3 (left) shows an example of a touch sensor’s response to a 25mm metal
coin after baselining and filtering. The touch sensor produces a signal that is con-
centrated at the centre of the coin, and with fringe fields that extend slightly beyond
its bounds. The signal’s high sensitivity to minute changes in an object’s position
allows a centroid to be resolved with sub-pixel precision.

Touch sensors are protected by a covering glass and are tuned to maximise their
sensitivity to objects touching this glass – but they do not require an object to be

1 Sensing Δ� is known as sensing the mutual capacitance between electrodes. In a related (but
more limited) technique, the self capacitance� of each electrode is measured individually (Barrett
and Omote, 2010; Walker, 2012).
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Fig. 3 A touch sensor’s response to a 25mmmetal coin (left) and with a 0.5mm plastic shim under
its base (right). Each cell is 4.5mm2; brighter cells indicate higher Δ� values.

in direct contact to produce a signal. Figure 3 (right) shows the sensor’s response
with a plastic shim lifting the coin at a small angle. The signal produced is a smooth
gradient as the distance between the touch sensor and the coin increases. Some
sensor designs can amplify this effect for sensing objects that are up to 30 cm from
the sensor (e.g. Hu et al, 2014).

PCT does not inherently detect the force applied to a sensor as changes in force do
not normally alter the capacitive properties of an object. That is, orthogonal forces
applied to the finger in Figure 2 will not change the Δ�.2 Rather, the force on a
touch surface is typically measured using a layer of Force Sensing Resistors (FSRs)
or strain gauges that change their electrical resistance with forces upon them that
deform the surface (Yaniger, 1991; Rosenberg and Perlin, 2009).

2.2 Finger–Surface Biomechanics

A finger’s contact with a touch screen is not a rigid-body interaction. The fingertip is
a soft, compliant object with complex dynamic properties. These properties produce
consequential dynamic changes to the signal observed by a touch sensor when a
fingertip is pressed against it.

The fingertip consists of a distal phalanx bone, wrapped by a fingertip pulp that is
mostly composed of subcutaneous fat, and a skin membrane (Figure 4). The fingertip
pulp has the properties of a viscoelastic material when it is pressed against a surface:
responses are repeatable, but have hysteresis, rate-dependence, and non-linear effects
(Serina et al, 1997; Srinivasan et al, 1992; Srinivasan and LaMotte, 1995; Pawluk
and Howe, 1999; Miyata et al, 2007).

Serina and colleagues (1997; 1998) measured and modelled the vertical com-
pression and contact area responses of a fingertip pressing against a flat surface at
different angles and forces. They found the fingertip pulp was very responsive to
changes at force levels under 1N, and quickly saturated at higher levels (e.g. 69%

2 If the electrodes are allowed the ‘float’ with respect to each other, then changes in the distance
between them from external forces can be detected by Equation 1.
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of the contact area at 5.2N of force was achieved by 1N). The effects were robust
across angles, and were invariant to subjects’ age and sex. In similar experiments,
Birznieks et al (2001) reported that most of the changes to the finger’s structure occur
in the fingertip pulp, and not between the fingernail and the bone.

Sakai and Shimawaki (2006) examined a finger’s contact area at acute angles and
found that contact length (along the axis of the finger) increased non-linearly at force
levels under 3N, and saturated thereafter. The change in contact length between force
levels was more pronounced as the angle of contact became more acute – caused by
a difference in dorsal and proximal pulp compliance.

Goguey et al (2018a) characterised finger pitch, roll, and yaw in a series of
fundamental touch operations (e.g. tapping, dragging, and flicking – see Section 2.3)
with each finger and the thumb. They found touch operations generally occurred at
a low pitch (less than 45°), but with significant effects for the digit used and the
orientation of the touch surface. Finger posture has also been studied in specific task
contexts – for example, Azenkot and Zhai (2012) reported systematic shifts in touch
distribution patterns with different typing patterns, which were later used to improve
text entry performance (Yin et al, 2013; Goel et al, 2013).

Even when force is not a parameter to an action, touch gestures necessarily convey
a certain force level and profile – particularly for gestures that involve extended
motion. Taher et al (2014) analysed these inherent force profiles (but explicitly not
the force level) for common interactions: tapping, typing, zooming, rotating, and
panning. They found typing and panning were generally characterised by a sharp
increase and decrease in force, with a slightly extended force plateau at the peak for
tapping actions (hypothesised to be a confirmation phase). For gestures that involved
extended interaction, force varied with the distance between the fingers (e.g. when
zooming), and with substantial variation in the profiles that included use of the
thumb.

2.3 Touch Interaction Design

Touch, by its nature, encourages a direct-manipulation style of interaction. The
absence of disparity in space or time (i.e. immediacy) elicits direct finger actions

Fig. 4 The primary parts of a
fingertip.
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(Lee et al, 1985). This is in contrast to desktop interaction, where a cursor separates
an intended point of interest from an action invocation, and an input device separates
the user’s input from the movements of the cursor.

As a result, modern touch interactions adopt direct manipulation characterised by
an instantaneous connection between the finger’s action and its functional outcome:
tapping an object activates or selects it; dragging or sliding over a distance moves
an object, translates a view, or draws a stroke; and pinching or spreading adjusts a
zoom factor.

An exception to direct touch interaction is the touch and hold (long press) gesture:
a user first touches an object, and then holds their position for a predetermined time
threshold (typically 400–500ms). The temporal disparity from the time threshold
creates a latency that separates the user’s action from the system’s response. That
is, the system’s response is triggered as a result of the user’s inaction, rather than a
parameter of their physical action. As reviewed below, this disparity has sometimes
been remedied by using the force of the input as a triggering mechanism.

However, direct interaction with a finger is not without costs: the finger’s size (in
comparison to a cursor or a stylus tip) and its necessary occlusion of targets on a
touch screen precludes very precise input – known as the fat finger problem (Vogel
and Baudisch, 2007; Holz and Baudisch, 2010, 2011; Bi et al, 2013). There has been
substantial research on improving these accuracy problems, although typically by
decreasing the directness of the interaction through intermediary devices or widgets
(e.g. Potter et al, 1988; Albinsson and Zhai, 2003; Vogel and Baudisch, 2007; Benko
et al, 2006)

2.3.1 Force-Based Interactions

Presuming that the force of a contact can be reliably measured (either with dedi-
cated force sensors or a synthesised approximation using other available sensors),
researchers have experimented with interaction use cases such as continuous input
controls for scrolling (Antoine et al, 2017; Baglioni et al, 2011; Miyaki and Reki-
moto, 2009), zooming (Suzuki et al, 2018; Miyaki and Rekimoto, 2009), selecting
between modes of operation (Brewster and Hughes, 2009), context menus (Wilson
et al, 2010; Heo and Lee, 2011b; Goguey et al, 2018b), and gesture operations (Rendl
et al, 2014; Rekimoto and Schwesig, 2006).

Researchers have also studied the benefits and limitations of ‘pseudo-force’ in-
dicated by an overt ‘rocking’ or ‘rolling’ gesture (Benko et al, 2006; Forlines et al,
2007; Arif and Stuerzlinger, 2013; Boring et al, 2012; Heo and Lee, 2013).

Boceck et al (2019) used a neural network on individual touch sensor images
to estimate static touch force. However, despite limiting their model to index-finger
data at a fixed posture (with the device resting on a flat surface), their model suffered
from substantial error variance.
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2.3.2 Developing a Deeper Touch Interaction

The touch-and-hold gesture is the weakest of the common touch gestures due to its
indirectness: it is difficult for users to discover or perform if the time threshold is too
long, or prone to misclassification as a tap gesture if the threshold is too short. These
problems are particularly acute on mobile devices where there is strong demand
for providing a wide range of interactive functionality within the limited physical
bounds of the display and input space. Force sensing offers a possible mechanism for
creating a direct press gesture, but has been challenged by the practical difficulties
of providing it in commercial hardware.

The biomechanical interaction between the finger and a touch-sensor reviewed in
Section 2.2 suggests that there is an opportunity to use the dynamic properties of the
finger to sense a more natural, direct pressing gesture. As touch sensor data does not
inherently contain force information (Equation 1), it is not possible to quantify the
force at which a user is pressing. However, the temporal changes in the touch sensor
data due to the biomechanical effects should reveal whether the force is qualitatively
changing. The remainder of this chapter describes the design and development of a
deep learning approach to sensing this change to provide a force-based direct press
gesture.

3 Deep Touch Model

Deep touch aims to discriminate a user’s touch intentions based on an understanding
of the biomechanical interface between their finger and a capacitive touch sensor,
and its temporal evolution as a gesture is performed. In particular, we aim to sense a
force-based press gesture to create a direct means of interaction.

Instead of estimating the parameters of tap location, force level, or scroll distance,
deep touch is explicitly focused on the classification of a gesture (e.g. tapping,
pressing, or scrolling). It takes a holistic and dynamic approach in processing the
temporal changes in touch sensor data: rather than estimating a finger’s force at each
frame of data and applying a heuristic over the estimated force, the sequence of
frames are considered together as to whether they represent increasing force. This
is advantageous because a single touch sensor image of an arbitrary finger contact
does not contain any force information, but through a sequence of such images the
application of force can be observed.

We develop anticipated patterns of touch sensor signals from the reviewed biome-
chanical literature and apply them to specific touch-gesture designs. Each gesture is
designed in terms of a finger’s contact with a touch sensor: how that contact evolves
over the course of the gesture and how that contact is realised in a temporal sequence
of touch sensor images.

These patterns can be identified in data by a neural network that combines learned
spatial features and learned temporal features. Rather than using an unconstrained
deep neural network, we use the anticipated touch sensor signal patterns to limit the
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size of the model so that it is possible to use the network for real-time inference
within the constraints of a production environment (see Section 4).

In the remainder of this section we detail these biomechanical patterns of touch
sensor signals, and the design of the model. We then describe a data collection
procedure for gathering labelled data to train the model, and the results of an offline
evaluation.

3.1 Touch Gesture Patterns

Although we aim to sense a force-based press gesture with our model, it must be
able to reliably discriminate this gesture from other touch gestures, namely tapping
and scrolling. We therefore describe analyses for these three gestures in terms of the
features that can be used to discriminate them.

A tap is conceptually the simplest touch interaction: a finger comes into symmetri-
cal contact with a touch sensor, reaches a stable saturation point, and then disengages
(lifts) from it. From the perspective of a touch sensor, the finger’s contact expands
symmetrically around its centre of mass (Figure 5). There is little modulation of
force after it saturates (Taher et al, 2014), and therefore the contact size or area will
not further increase after the first few frames.

As a user evolves a contact into a press by applying more force behind their finger,
the biomechanical literature informs us this will be conducive to an asymmetric
contact expansion along the axis of the finger (Serina et al, 1997, 1998; Birznieks
et al, 2001; Sakai and Shimawaki, 2006; Srinivasan et al, 1992; Pawluk and Howe,
1999). This will be prominent given that touch interactions generally occur at a low
pitch (Goguey et al, 2018a). The touch sensor will therefore observe an expansion of
the contact mass in one direction, while remaining ‘anchored’ at one edge (Figures 1
and 6).
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Fig. 5 A tap gesture observed by a touch sensor: the signal values (cell brightness) change sym-
metrically around the centre of mass. The top row shows the raw frames; the bottom row shows
each frame’s difference from the preceding frame.
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It is important to note that this assumes that either tapping gestures will be
performed with a force of less than 1 or 2N (i.e. before the contact area saturates –
Serina et al, 1997, 1998; Sakai and Shimawaki, 2006), or the speed of the force onset
will be significantly different during a tap. However, an advantage of this design is
its invariance to the finger used to make the contact – that is, although a thumb and
little finger will have substantially different contact areas, the relative changes as
force is applied will be similar.

Scrolling interactions – both dragging and flicking (Quinn et al, 2013) – are
primarily characterised by their contact displacement. This is facilitated in current
systems by a ‘touch slop’ or hysteresis threshold to engage a scrolling mode (and
exclude the possibility of tapping or pressing). Such a threshold is required because
a contact point will rarely be stationary during tap and press interactions: jitter from
the user’s muscle tremor and from the unfolding contact area will retard the centroid
location (Wang et al, 2009; Wang and Ren, 2009).

This displacement is conveyed in the touch sensor image through changes at
the fringes of a touch. If the image is held at the calculated centroid, then motion
is conveyed through a consistent decrease in signal at one edge, with a matched
increase in signal at the other.

3.2 Model Design

Classification of touch gestures must occur online, in real-time, from continuous,
variable-length time series data (i.e. without waiting for the finger to lift from the
touch sensor). That is, the identification of a touch gesture should be made as soon
as the user’s intent is sufficiently expressed – without further perceptible delay in
time (in the case of tapping or pressing) or in space (in the case of scrolling). The
identification also needs to be incremental, and not based on the entire gesture after its
completion. Such a task lends itself to classification with a recurrent neural network
(RNN) (e.g. Graves, 2012): touch sensor images can be input to the network as they
are received, with the network’s state preserved between each image. The output
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Fig. 6 A press gesture observed by a touch sensor: the signal values (cell brightness) change
asymmetrically around the centre of mass. The top row shows the raw frames; the bottom row
shows each frame’s difference from the preceding frame.
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Fig. 7 An overview of the deep touch model’s design.

probability of each gesture class can be updated and compared against a threshold
after each image is received – minimising classification latency. In particular, Long
Short-Term Memory (LSTM) units allow for complex temporal patterns across the
input to be identified (Hochreiter and Schmidhuber, 1997).

Our model was designed to capture a learned sequence of the axial features
described above, and is illustrated in Figure 7. The input is a baselined 7 × 7 (16-bit;
single-channel) image from the touch sensor, cropped around the calculated centroid.
This image is large enough to cover all reasonable touch contacts while minimising
bandwidth requirements (i.e. image data can be transmitted with centroid data at
120Hz – the native frequency of the touch sensor).

Each touch sensor image is first passed through a convolutional neural network
(CNN). The image is convolved with a 3 × 3 filter,3 and is padded with zeros to
produce a filtered image of the sameheight andwidth. This filtered image is processed
separately by 1 × 7 and 7 × 1 filters to extract ‘row’ and ‘column’ features – reflecting
the patterns of axial changes in contact mass and area. The concatenation of these
features is fed into a recurrent layer (32 unit LSTM), which produces a gesture class
output vector (softmax via linear activation) and a 2 × 32 state vector. For a sequence
of images, the state vector is initialised with zeros, and is preserved between them.

3.3 Data Set Development

In many domains (e.g. computer vision or natural language processing), samples
of natural phenomena can be collected into a corpus and used to train a model.
However, interactive gestures are artificial – they are constructed by a designer that
is expecting users to perform a particular set of inputs – and therefore must be
collected by eliciting them experimentally.

3 All convolutional filters have a depth of 16, with ReLU activation between each operation (Glorot
et al, 2011).
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We collected a data set of labelled capacitive touch sensor image sequences that
were representative of tap, press, and scroll operations on mobile devices in three
tasks: (1) a target selection task, (2) a dragging task, and (3) a search-and-select
task. The first two tasks asked for mechanical performances of common interactions,
while the third was indicative of actual interaction and interleaved sequences of
scrolling with tapping.

We collected data for both long press and deep press tasks separately: long press
was defined using the system’s standard time-based threshold of 400ms, while deep
presswas a user-defined force gesture. Similarly, we divided scroll tasks into flicking
and dragging tasks: flicking tasks were scrolling actions of medium–long distances,
while dragging tasks were micro-scrolling movements. The data for each of these
tasks were labelled with their respective categories: tap, deep press, long press, flick,
and drag. The reason for these divisions was to separate different finger motions (e.g.
drag and flick) that generate the same touch gesture (e.g. scroll), and ensure that the
principal features of the underlying motions can be identified by the model.

3.3.1 Participants & Apparatus

Nineteen volunteers (11 male; 8 female) with an age range of 18–60 participated in
the experiment and received a gift voucher for doing so. The experiment was run
on a Google Pixel 4 device with a 144 × 67mm display running at a resolution of
3040 × 1440 px. The touch sensor had a resolution of 36 × 17 cells, and reported a
7 × 7 cell image centred on the cell that contained the calculated touch centroid at a
rate of 120Hz.

3.3.2 Task Design

We used three interaction tasks – target selection, dragging, and search-and-select
– to elicit the five classes of gestures identified earlier.

The target selection task (Figure 8a) placed 12 circular targets of varying radii
across the screen, and asked subjects to perform a particular touch gesture on each
one (tap, long press, or deep press). Targets had their radius (105, 140, or 175 px),
horizontal location (20, 50, or 80% of the screen width), and vertical location (9,
36, 64, or 91% of the screen height) randomly sampled to ensure interactions were
distributed across the display. Only one target was visible at a time. Data from this
task were labelled with the requested touch gesture.

Participants received haptic feedback when they were asked to long press (the
system’s default behaviour). However, no feedback was given for deep-press tasks in
order to avoid biasing participants towards a particular biomechanical performance
– any interaction on a target was recorded as a deep press sample.

The dragging task (Figure 8b) simulated fine scrolling tasks (e.g. moving a cursor
within a text field) by asking participants to drag a solid target to a hollow dock.
The targets were created and displayed as with the target selection task, but with
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smaller target radii (70, 105, or 140 px) to simulate a fine-scrolling scenario like text
selection. The dock was placed at varying distances (35, 53, or 70 px) and directions
(up, down, left, right) from the target. Targets were initially blue, and turned orange
with haptic feedback when they neared the dock – indicating that the task could be
completed by lifting the finger. Data from this task were labelled as drag samples.

The search-and-select task (Figure 8c) included tapping and flicking actions. Each
task required participants to scroll and locate a circular target (using a combination of
dragging and flicking), and perform a tap on the target. The 12 targets were created
and displayed by random sampling their radius (140, 175, or 210 px), horizontal
location (20, 50, or 80% of the screen width), and vertical location (25, 38, or 63%
of the screen height between targets) to ensure interactions were distributed across
the display. Each target had a randomly assigned label between 1 and 12, and the task
proceeded sequentially through them (cued to participants in the top-right corner of
the display). Data from this task were labelled as performed.

3.3.3 Procedure

Participants were encouraged to perform a deep press using their preferred force and
duration (potentially shorter than the current long-press duration), and to perform
the tap, long press, drag, and flick operations as usual.

Each task (one target selection task for each gesture, one dragging task, and one
search-and-select task) was performed in a counter-balanced order, and repeated as
three blocks. The tasks were repeated in each of four postures (counter-balanced):
(1) one-handed using a thumb to interact, (2) two-handed using either thumb to
interact, (3) one-handed using the opposing index finger to interact, and (4) in a

(a) The target selection
task: tap, long press, and
deep press on a target.

(b) The dragging task:
drag a solid target into a
hollow dock.

(c) The search-and-select
task: scroll to locate a tar-
get and then tap on it.

Fig. 8 The design of the data collection tasks.
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landscape orientation with both hands, using either thumb to interact. In all postures
the phone was hand-held. Participants could rest between blocks.

This procedurewas repeated twice: oncewith a rubber case on the device, and once
without a case. This ensured that touch sensor data were collected in both electrically
grounded and ungrounded conditions – which have substantially different signal and
noise characteristics.

3.4 Training

To train the model described above, the collected data were randomly divided into
training (15 participants) and evaluation (4 participants) sets. No participant con-
tributed samples to both sets. The model’s output was configured to estimate proba-
bilities for five classes: tap, deep press, long press, flick, and drag.

To isolate the portion of each sample that contained the gesture performance, the
trailing 25% of each sequence was discarded. This effectively removed the portion
where the participant’s finger lifted from the touch sensor (i.e. after the gesture had
been performed).

Each training sample was also extended to a minimum duration of 48ms
(6 frames) by linear interpolation, and truncated to a maximum duration of 120ms
(15 frames). This prevented certain touch gestures from being discriminable purely
by their duration (in practice we expect to observe more variance in duration than
captured in the laboratory). This processing was not applied to the samples used for
evaluation.

We used the summed cross-entropy across each sequence as the loss function
to minimise, with a linear temporal weight. That is, given a sequence of frames
C ∈ [1, )] with a true class distribution at each frame ?C , and a predicted class
distribution at each frame @C , the loss over the classes X was:

L(?, @, )) = −
)∑
C=1

[
C

) (1 + ))/2
∑
G∈X

?C (G) log @C (G)
]
.

As with earlier weighted cross-entropy methods, this encourages the model to pro-
duce classifications with an increasing probability for the correct class as input is
received (Aliakbarian et al, 2017; Ma et al, 2016). However, in our formulation the
weights always summed to 1 in order to make the total loss invariant to the length
of the sequence, and avoid a potential bias in the model towards classes with shorter
sequences.

To reflect the temporal ambiguity in the sequence, the true class distribution was
defined at each frame with a logistic function. As the first few frames of a sequence
for all classes are likely to be substantially similar (i.e. at the moments a finger first
contacts the touch sensor), it is unreasonable to claim there is a high likelihood in
the sequence’s ultimate classification for such frames (i.e. as with a one-hot encoded
probability distribution). Similarly, it is unreasonable to penalise the model with
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a high cross-entropy if it does not produce a confident prediction at these early
frames. Therefore, the distribution ?C was defined to start at 1/|X| for all classes,
and transition towards either 1 or 0, depending on the true label - for the sequence:

?C (G) =


1

( |X| − 1)4−C+1 + 1
G = -.

4−C+1

( |X| − 1)4−C+1 + 1
G ≠ -.

(2)

Defining the true class distribution in this manner also helps calibrate the output
probabilities and avoid spurious values in the first few frames during inference.

3.5 Results

To verify our patterns of axial changes in sensor images and demonstrate the impor-
tance of using temporal weights in the loss function, we conducted ablation studies
with three model variations: (1) the complete model, as described above; (2) the
model trained without the ‘row’ and ‘column’ convolutional filters, (3) the model
trained without the temporal labels (Equation 2). Table 1 shows the overall accuracy
and deep press precision/recall for these three models – with the removal of the
row/column filters or the temporal weights having a substantial negative effect on
the model’s performance.

Table 2 shows the confusion matrix for the evaluation data set, with an overall
accuracy of 83%. When considering deep press as a binary class (i.e. deep press vs.
not-deep-press), the overall accuracy is 95% with a precision of 89% and a recall of
75%.

In general, there is good separation between the classes, with the primary areas
of confusion being between deep press and the long press/drag classes. However,
a significant caveat with the reported deep press accuracy is the lack of feedback
given to participants during the data collection procedure. The collected dataset was
deliberately harder to classify than gestures with feedback will be in practice. That
is, any action on the deep press targets were accepted and labelled as such, without
constraint or validation. There are therefore likely to be poor samples in the data

Table 1 Overall model accuracy and deep press precision/recall for themodel component ablations.

Accuracy Deep Press

Precision Recall

Complete model 83% 88% 78%

Without row/column filters 73% 69% 48%

Without temporal labels 76% 66% 67%
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Table 2 The confusion matrix for the offline model evaluation.
Predicted

Tap Deep Long Flick Drag

Ac
tu
al

Tap 98% — — — 2%

Deep — 78% 14% — 8%

Long — 9% 60% — 31%

Flick 1% — 1% 95% 3%

Drag 2% — 12% 7% 79%

from either accidental touches or postures that do not produce a distinct ‘press’ (e.g.
fingers approaching orthogonal to the display).

Creating a feedback loop would give users the opportunity to learn the distin-
guishing characteristics of the gesture, and drive them towards discriminating their
own actions (Kaaresoja et al, 2014). This issue is addressed in the following section.

4 System Integration & Evaluation

The prior section demonstrated that temporal changes in touch sensor images convey
distinct signals that can be used to discern a force-based press gesture. However, the
deep touch model does not eliminate the need for heuristic classification of touch
gestures as not all touch intentions involve predictable finger-based interactions (e.g.
a conductive stylus or certain finger postures would not exhibit the biomechanical
properties described). Rather, the model provides a method for accelerating the
recognition of a user’s intentions when they are clear from the contact posture.

In this section we describe incorporating the deep touch model into the Android
input system to enable its practical use (Quinn and Feng, 2020). This involves
combining the neural deep touch model with the existing heuristic classification
algorithm – allowing the neural model’s signals to accelerate classificationwhen they
becomemanifest in the touch sensor data, but falling back to traditional classification
for unusual postures or when there is ambiguity in the signal. We then describe a
user study to examine the practical classification performance of this algorithm.

4.1 Gesture Classification Algorithm

TheAndroid input system provides signals about touch gestures to applications in the
three categories discussed: tap, press, and scroll.4 Applications typically map press
signals to secondary invocation functions (e.g. context menus or word selection),

4 https://developer.android.com/reference/android/view/GestureDetector
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and so we decided to supplement this signal with our neural model classification
– that is, allowing a press gesture to be triggered by either a long press or a deep
press. This supports our goal of providing a direct touch gesture, but does not require
existing applications to modify how they handle touch gestures in order to benefit
from it.

Combining a probabilistic model with a heuristic algorithm offers two benefits to
users: (1) lower latency for interactions when the intention is clear from the touch
expression, and (2) the certainty and reliability of a baseline in the presence of input
ambiguity. We therefore prefaced the existing gesture detection algorithm (steps 2–4
below) with a decision point for the neural model’s classification (Figure 9):

1. If the neural model indicates the sequence is a ‘deep press’ with a probability
greater than 75%, the gesture is classified as a press. (However, if the neural
model indicates similar confidence in another gesture classification, then only the
heuristics are used for the remainder of the sequence.)

2. If the duration since the initial contact exceeds a time threshold of 400ms, the
gesture is a press.

3. If the distance from the initial contact location exceeds a hysteresis threshold, the
gesture is a scroll.

4. Otherwise, the gesture is a tap when the finger contact is lifted.

Once a sequence has been classified, it is never reconsidered.
The hysteresis threshold for scroll classification was dynamically set based on the

output of the model: 56 pxwhile the neural model’s output was below the probability
threshold of 75% for any of the gesture classes, and 28 px thereafter. That is, the
threshold was doubled while the neural model expressed that the sequence was
ambiguous – as it is common for some erroneous shift in the touch centroid as a
finger’s area expands into the touch sensor during a press.

This algorithm allows the heuristic criteria to identify tap and long-press gestures
when the model is unable to confirm an interaction as a press. However, the model’s
training on five classes allows it to learn the discriminating characteristics of all
possible interactions.

The neural model was implemented using TensorFlow Lite with an on-disk size
of 167 kB, and a runtime memory load of less than 1MB. When executing the model

t - t0 > 400ms

Press

p - p0 > 28px

Scroll

Touch Event

Tap

Finger liftedDeep press 
prob. > 75%

Yes

No No No

Yes Yes Yes

Fig. 9 An overview of the inference algorithm: the neural model is integrated into the heuristic
classification pipeline to provide an acceleration for press gestureswhen themodel’s output indicates
high confidence.
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on a Google Pixel 4 device, inference time averages 50 µs per input frame. This
allows the model to execute for each image received from the touch sensor (i.e. at
120Hz) and report its results to applications without impacting touch latency or
system performance.

4.2 Evaluation

We conducted an evaluation of the algorithm to examine its performance. The
evaluation followed a similar design and procedure as the data collection described
earlier, but with two key differences: (1) haptic feedback was given to subjects when
a deep press was detected (matching that for long press), and (2) the targets in the
search-and-select task were either labelled tap or press (not just tap) to simulate
realistic usage of the two touch expressions.

The gesture prompts to participants were the same as during data collection, and
correctness was not enforced (e.g. a participant could perform a tap on a press target,
which would be recorded as a failed classification).

Fourteen volunteers (10 male; 4 female) with an age range of 18–60 participated
in the experiment and received a gift voucher. The experiment was run on the same
type of device used for data collection. Due to time constraints, the use of a rubber
phone case was a between-subjects condition.

Table 3 shows the confusion matrix across all data in the user study. As the gesture
classification algorithm does not distinguish between the type of press – long or deep
– we consider them together. This matches the experience that users will receive in
practice, as the system response for all types of press – secondary invocation – is
identical. The performance for binary press classification has a precision of 97% and
a recall of 88%, with an average time to classify a press with the neural model of
235ms (from the initial contact to the crossing of the probability threshold).

The largest source of confusion for presswaswith scroll.Much of this was due to a
shift in the centroid caused by the expanding finger contact exceeding the hysteresis
threshold before the model probability threshold. This occurred at approximately
twice the rate for deep press than for long press, which is unsurprising given that
deep press encourages an expanding contact area that may affect the centroid. The
confusion between press and tap occurred at the same rate for deep press and long
press, and was likely due to user error.

Table 3 The confusion matrix for the online model evaluation.
Predicted

Tap Press Scroll

Ac
tu
al Tap 99% 1% —

Press 4% 88% 8%

Scroll — 2% 98%
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The rate of false-positive scrolls can be balanced against false-positive presses
using the scroll hysteresis threshold, which is weighted by the cost of different types
of classification errors. For instance, a false-positive press is likely to be more costly
to a user than a false-positive scroll because a press typically invokes some action
that may be difficult for a user to reverse or correct, whereas a scroll may only
displace the content.

5 Discussion

The deep touch neural model uses the biomechanical signals captured by a touch sen-
sor to identify force-based press gestures from users without dedicated force-sensing
hardware. By extracting spatial and temporal features in the touch image sequence,
the deep touch neural network can enhance the modern touchscreen gesture expe-
rience beyond what conventional heuristics-based gesture classification algorithms
could do alone. The model can be executed in a production environment (delivered
with Google Pixel 4 and Pixel 5 devices) without increasing touch input latency or
impairing system performance.

Instead of creating a new interaction modality, we focused on improving the user
experience of long press interactions by accelerating them with force-induced deep
press in a unified press gesture. A press gesture has the same outcome as a long press
gesture, whose time threshold remains effective, but provides a stronger connection
between the outcome and the user’s action when force is used. This allowed us to
create a more natural and direct gesture to supplement the conventional, indirect
touch and hold gesture.

Combining a neural model with the existing heuristic method of gesture detection
allows biomechanical information to be identified and utilised when it is present,
but without harming the usability of touch input for other finger postures. However,
this means that the relationship between the heuristic criteria and the probabilistic
output of a neural model needs to be carefully considered. Specifically, in cases of
ambiguity the system may want to err towards the least costly or most consistent
classification for the user, rather than the most accurate.

This is most visible in the confusion between a press and a scroll, where the
expanding contact area of the press gesture erroneously induces a change in the touch
centroid that triggers a heuristic scroll classification. There are further opportunities
here to either tune the scroll hysteresis threshold, or to leverage the neural model to
aid in classification of a scroll gesture as well.

While data curation and training are key to any successful neural network devel-
opment, they are particularly important and challenging in solving low level HCI
problems with neural networks where the human actions and their effects and feed-
back are linked in a tight interaction loop. Lacking naturally existing datasets that can
be labeled offline, we took a data elicitation approach in developing the deep touch
model, by asking human participants to intuitively perform touch gestures as they
expect and against a set of tasks. However, this data collection procedure for training
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samples lacked haptic feedback for the deep press gesture, which might have affected
its offline classification performance (Table 2). Potentially the training datasets and
the network’s performance can be further enhanced by a closed-loop data collection
with haptic feedback for all touch gestures, with the feedback driven by the current
deep touch model.

Neuralmodels are alsowell-suited for touch interactions beyond those studied here
– and the human–computer interaction literature has many examples. For example,
finger rolling (Roudaut et al, 2009), ‘pushing’ and ‘pulling’ shear forces (Heo and
Lee, 2011a; Harrison and Hudson, 2012; Heo and Lee, 2013; Lee et al, 2012),
and ‘positive’ and ‘negative’ force gestures (Rekimoto and Schwesig, 2006) might
be supported with similar biomechanical patterns. This style of analysis may also
provide insight into perceived input location issues (Holz and Baudisch, 2010) and
improved touch contact location algorithms by capturing more information about
the contact mass.

6 Conclusion

This work demonstrates that combining capacitive touch sensing with modern neural
network algorithms is a practical direction to improve the usability and expressivity
of touch-based user interfaces. The work was motivated by a deep touch hypothesis
that (1) the human finger performs richer expressions on a touch surface than simple
pointing; (2) such expressions are manifest in touch sensor image sequences due
to finger–surface biomechanics; and (3) modern neural networks are capable of
discriminating touch gestures using these sequences. In particular, a deep press
gesture, accelerated from long press based on an increase in a finger’s force could
be sensed by a neural model in real time without additional hardware, and reliably
discriminated from tap and scroll gestures. The press classification has a precision
of 97% and a recall of 88%, with an average time reduced to 235ms from the
conventional 400–500ms) long press.

More broadly, input sensors often capture rich streams of high-dimensionality
data that are typically summarised to a few key metrics to simplify the development
of heuristic analyses and classifications. Neural methods permit the analysis of the
raw data stream to find more complex relationships than can be feasibly expressed
with heuristics, and computational advances have made it feasible to operationalise
these models in real-time. This chapter has described a practical instance of this –
deep touch – where a neural model has enhanced existing heuristic methods, and
been deployed widely to enable a richer user experience.
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